Immunization with Dendritic Cells Pulsed ex vivo with Recombinant Chlamydial Protease-Like Activity Factor Induces Protective Immunity Against Genital Chlamydia muridarum Challenge

نویسندگان

  • Weidang Li
  • Ashlesh K. Murthy
  • B. K. R. Chaganty
  • M. Neal Guentzel
  • J. Seshu
  • James P. Chambers
  • Guangming Zhong
  • Bernard P. Arulanandam
چکیده

We have shown that immunization with soluble recombinant chlamydial protease-like activity factor (rCPAF) and a T helper 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia-induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs) pulsed ex vivo with rCPAF + CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF + CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40, and major histocompatibility complex class II (MHC II), and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF + CpG-pulsed BMDCs or UV-EB + CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN-γ and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF + CpG-pulsed BMDCs or UV-EB + CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB-BMDCs, for inducing robust anti-Chlamydia immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA-DR4 allele.

There is no licensed vaccine available against Chlamydia trachomatis, the leading cause of bacterial sexually transmitted disease. We have found that intranasal immunization with recombinant chlamydial protease-like activity factor (CPAF) induces CD4(+) T-cell- and gamma interferon (IFN-gamma)-dependent protective immunity against murine genital chlamydial infection, thus making CPAF a viable v...

متن کامل

Vaccination against Chlamydial Genital Tract Infection after Immunization with Dendritic Cells Pulsed Ex Vivo with Nonviable Chlamydiae

Chlamydia trachomatis, an obligate intracellular bacterial pathogen of mucosal surfaces, is a major cause of preventable blindness and sexually transmitted diseases for which vaccines are badly needed. Despite considerable effort, antichlamydial vaccines have proven to be elusive using conventional immunization strategies. We report the use of murine bone marrow-derived dendritic cells (DC) pul...

متن کامل

Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production.

There is currently no licensed vaccine against Chlamydia trachomatis, the leading cause of sexually transmitted bacterial disease worldwide. Conventional vaccination attempts using surface-exposed chlamydial antigens have achieved only partial success. We have employed a novel vaccination strategy using a secreted protein, chlamydial protease-like activity factor (CPAF), which has been shown to...

متن کامل

Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective.

Chlamydia trachomatis is an obligate intracellular bacterium that infects the oculogenital mucosae. C. trachomatis infection of the eye causes trachoma, the leading cause of preventable blindness. Infections of the genital mucosae are a leading cause of sexually transmitted diseases. A vaccine to prevent chlamydial infection is needed but has proven difficult to produce by using conventional va...

متن کامل

Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection.

Chlamydia has been shown to evade host-specific IFN-gamma-mediated bacterial killing; however, IFN-gamma-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011